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Abstract
A method for correlated quantum electron–ion dynamics is combined with a
method for electronic open boundaries to simulate in real time the heating, and
eventual equilibration at an elevated vibrational energy, of a quantum ion under
current flow in an atomic wire, together with the response of the current to
the ionic heating. The method can also be used to extract inelastic current–
voltage corrections under steady-state conditions. However, in its present form
the open-boundary method contains an approximation that limits the resolution
of current–voltage features. The results of the simulations are tested against
analytical results from scattering theory. Directions for the improvement of the
method are summarized at the end.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Molecular dynamics (MD) simulations coupled with electronic transport calculations have
found fruitful applications in the study of nanoscale conductors by helping to establish a
connection between the electrical and mechanical properties of these systems [1]. Electronic
and atomic motion in such simulations can be coupled together at a variety of levels. Early
simulations treated mechanical and transport properties separately, for example by carrying
out an MD simulation of a nanoscale contact using an empirical interatomic potential and
placing the series of atomic geometries thus generated into a separate steady-state conductance
calculation [2–5]. In more advanced studies, an ab initio MD simulation of the atomic structure
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is combined with a conductance calculation that uses the self-consistent one-electron potential
from the simulation [6–8]. Such simulations give insight into the effect of changes in the
atomic structure and geometry, driven for instance by an external strain, on the conductance
of a nanocontact but cannot address the reverse question: how the flow of current affects the
actual interatomic forces.

That question can be addressed by computing the forces on atoms (or, fundamentally,
on the ions or nuclei) from the actual steady-state current-carrying electronic structure in an
atomic or molecular wire under bias [9–11]. The forces on atoms calculated in this way
contain current-induced corrections due to the difference between the electronic structure under
current and the ground-state electronic structure. Such calculations, therefore, can shed light
onto the driving force for processes such as electromigration, in which current flow, together
with thermal activation, can induce atomic rearrangements and a flow of atoms. This type of
calculation, however, remains akin to Born–Oppenheimer dynamics, in that, for a given atomic
geometry, electron–ion scattering is treated as purely elastic and the electronic subsystem is
assumed to always remain in the steady state appropriate to the given ionic positions. It
therefore cannot yet capture the inelastic scattering of electrons by atomic vibrations and the
resultant exchange of energy between the two.

The next step in the dynamical simulation of atomic-scale conductors is to seek forms
of MD in which both electrons and ions are treated dynamically under current flow in a way
that captures simultaneously the departures from equilibrium in each subsystem, and the forces
of interaction and the exchange of energy between them. The motivation behind this effort
is to be able to simulate the current-driven dynamics of ions in real atomic-scale conductors
and to model experimentally detectable phenomena, such as the heating of atomic vibrations
by current-carrying electrons [12–14], the current–voltage (I –V ) corrections arising from the
inelastic scattering of electrons by nuclear vibrations [15], and the failure of a nanowire under
high currents [16], as real-time, dynamical processes.

Ehrenfest dynamics is a form of non-adiabatic MD that has been combined with methods
for electronic open boundaries (OB) to do time-dependent simulations of electron–nuclear
dynamics under current [17, 18]. Ehrenfest dynamics, however, is a form of mean-field
electron–ion dynamics, which does not give a full description of inelastic scattering. It can
describe the excitation of electrons by energetic nuclei but suppresses the reverse process: the
excitation of atomic vibrations by the non-radiative decay of excited electrons [19–21].

A recently proposed method for correlated electron–ion dynamics (CEID) reinstates the
lowest-order corrections to Ehrenfest dynamics by an expansion of the electron–ion quantum
Liouville equation in powers of correlated electron–ion fluctuations. This expansion was
carried out to first order in reference [20] and was combined with electronic OB in [22]. The
first-order expansion gives the power injected into atomic vibrations by excited electrons [20],
but is unable to describe the response of the electrons to the resultant vibrational heating
because of the absence of dynamical variables at that level of the expansion that keep track of
the breathing of the ionic distribution due to inelastic scattering with electrons. When carried
over to second order [21], the method does retain the variables needed to describe the exchange
of energy between electrons and ions out of equilibrium and the response of electrons to the
resultant variations in the ionic distribution.

In [21] the second-order CEID expansion was applied to current flow in finite systems to
observe the onset of phonon excitation by current-carrying electrons. However, these finite-
system simulations were restricted to short timescales and could not be used to see the eventual
steady state and the behaviour of the system on the way there.

The present work removes this limitation by combining the second-order CEID expansion
with electronic OB to enable electron–ion dynamical simulations under current over long
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timescales. The method is used for a model simulation of the heating of a quantum ion in an
atomic wire, from the onset of inelastic scattering to the eventual equilibration of the ion with
the current at an appropriate elevated ionic vibrational energy, together with the accompanying
response of the current to the changing scattering cross-section of the ion.

The electronic OB method used to generate and maintain current flow in the present
paper is a re-formulation of the methods in [17, 22, 23]. As in those references, we work
with the one-electron density matrix (DM). The choice of the DM, as opposed to electronic
wavefunctions [24] or time-dependent Green’s functions [25], is dictated by the method for
CEID in [20, 21], which is formulated in terms of the DM and DM-like electron–ion correlation
operators. The DM has the benefit that it allows a compact description of both the electronic
wavefunctions and their occupancies.

The present OB method differs from those in [17, 22, 23] in the way in which the
OB driving terms for a system between two electrodes are constructed and interpreted.
In [17, 22, 23] a damping mechanism is introduced in the electrodes that continually drives
the electronic DM therein towards a reference value. Different choices are possible for this
reference value (and, in the case of CEID, for the electron–ion correlation operators) and for
the relative strengths with which different subblocks of matrices are damped.

Here, this choice is restricted by invoking an explicit realization of the external battery
that leads to an explicit expression for the OB terms for the reduced one-electron DM in the
system connected to the battery. The driving terms explicitly contain the electronic energy
distributions of the external reservoirs. This is important, because these distributions, together
with the intrinsic properties of the conducting system, control the transport characteristics of
the assembly. For time-independent Hamiltonians the method guarantees exact agreement with
the conventional two-terminal Landauer formalism in well-defined limits.

For time-dependent Hamiltonians the OB terms for the DM are temporally non-local.
To apply the OB method to dynamical electron–ion simulations, here we introduce an
approximation that removes this temporal non-locality and makes the OB terms independent of
the dynamical scattering of electrons in the system of interest. This approximation, however,
introduces an energy broadening in the incoming electronic distributions, which limits the
resolution of I –V features. Extensions beyond this approximation are a subject for future
work.

The next two sections describe the OB method, first from a static and then from a time-
dependent point of view. The method is then combined with CEID and is applied to the
I –V spectrum of a quantum ion in a one-dimensional atomic wire, and to the heating and
equilibration of the ion with the current-carrying electrons in real time, under different biases.
The simulations are compared against analytical results from scattering theory for the present
simple system, and against closed-system CEID simulations. Directions for future work are
discussed at the end.

2. The multiple-probe battery: elastic steady state

We consider the system in figure 1. It consists of three finite, though possibly large, regions
L, C and R. Label S will denote the LC R assembly as a whole. We use a discrete
orthonormal real-space one-electron basis {|i〉}, such as a real-space grid or a tight-binding
orbital basis. Each site (or orbital basis state) i in regions L and R is weakly coupled to an
external probe, Pi , through a Hamiltonian matrix element γi . Each probe in isolation has a
retarded and advanced surface Green’s function g±

Pi
(E) and a surface local density of states

dPi (E) = −π−1 Im g+
Pi
(E).

3
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Figure 1. The S = LC R system with multiple probes attached to regions L and R.

All probes attached to sites in L(R) are maintained at an electrochemical potential
μL(R), with a corresponding electronic Fermi–Dirac distribution fL(R)(E). A probe-specific
electrochemical potential and electronic temperature may be introduced, but we will not do
that here. Electrons are treated as non-interacting or as interacting through an effective mean-
field one-electron potential. The benefits of the multiple-probe assembly are summarized at the
end of this section and at the end of section 3.1.

The system S in the presence of the external probes is characterized by an electronic self-
energy

�̂±(E) =
∑

i∈L

|i〉γ 2
i g±

Pi
(E)〈i | +

∑

i∈R

|i〉γ 2
i g±

Pi
(E)〈i | = �̂±

L (E) + �̂±
R (E). (1)

If the components L, C and R are connected, a current flows in the system. Using, for
example, the Lippmann–Schwinger equation for the wavefunctions of electrons incident on
S from individual probes [26], the one-electron DM in S in the steady state may be written as

ρ̂S =
∫ +∞

−∞
Ĝ+

S (E)�̂<(E)Ĝ−
S (E) dE (2)

where6

Ĝ±
S (E) = [E 1̂S − ĤS0 − �̂±(E)]−1 (3)

�̂<(E) = fL (E)
∑

i∈L

|i〉γ 2
i dPi (E)〈i | + fR(E)

∑

i∈R

|i〉γ 2
i dPi (E)〈i |

= 1

2π i
fL (E)[�̂−

L (E) − �̂+
L (E)] + 1

2π i
fR(E)[�̂−

R (E) − �̂+
R (E)]. (4)

Here

ĤS0 = ĤL + ĤLC + ĤCL + ĤC + ĤC R + ĤRC + ĤR (5)

6 The present notation occasionally departs from standard definitions; all quantities used are as defined in the text.
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is the one-electron Hamiltonian in S,7 which for the moment is treated as time-independent and
which may have been self-consistently calculated. Here, and below,

1̂M =
∑

i∈M

|i〉〈i | (6)

denotes the identity operator in region M . We will also use the notation

ÂM N = 1̂M Â1̂N , ÂM ≡ ÂM M (7)

for a one-electron operator Â.
By use of the Dyson equation, the DM in region C may be written as

ρ̂C =
∫ +∞

−∞
Ĝ+

C (E)σ̂<(E)Ĝ−
C (E) dE (8)

σ̂ <(E) = ĤCL fL (E)d̂L(E)ĤLC + ĤC R fR(E)d̂R(E)ĤRC (9)

Ĝ±
C (E) = [E 1̂C − ĤC − σ̂±(E)]−1 (10)

σ̂±(E) = ĤCL ĝ±
L (E)ĤLC + ĤC R ĝ±

R (E)ĤRC (11)

where

ĝ±
L(R)(E) = [E 1̂L(R) − ĤL(R) − �̂±

L(R)(E)]−1, d̂L(R)(E) = 1

2π i
[ĝ−

L(R)(E) − ĝ+
L(R)(E)]

(12)

are the retarded and advanced Green’s functions and density of states operator for region L(R)

coupled to its probes but not coupled to C .
The effect of the multiple probes is to smear out the discrete energy levels of the electrodes

L and R, turning these regions into metals with a continuous density of states. If L and R are
long enough and the coupling to the probes is weak enough, local matrix elements of ĝ±

L(R)(E)

in the real-space basis may be expected to tend to those for semi-infinite electrodes. Then the
steady-state electronic structure in C given by equations (8)–(12) becomes the same as what
we would have written down in the conventional two-terminal setup, in which C is coupled to
two semi-infinite metallic electrodes injecting electrons into C with electrochemical potentials
μL and μR . Therefore, in the limit of long electrodes and weak probe–electrode coupling,
we expect the multiple-probe assembly in figure 1 to produce the same steady-state electronic
structure in region C as that in the two-terminal Landauer picture.

The above argument simplifies if we make the probe–system coupling the same for all
probes, γi = γ , and the probe surface density of states an energy-independent constant (thus
assuming the wideband limit in the probes), dPi (E) = d , g+

Pi
(E) = −π id . Then equations (1),

(3) and (4) become

�̂+ = �̂+
L + �̂+

R = −i
�

2
1̂L − i

�

2
1̂R, �̂− = �̂+† (13)

Ĝ±
S (E) = (E 1̂S − ĤS0 − �̂±)−1 (14)

�̂<(E) = �

2π
fL (E) 1̂L + �

2π
fR(E) 1̂R (15)

� = 2πγ 2d (16)

with ĝ±
L(R)(E) = (E 1̂L(R) − ĤL(R) ± i1̂L(R)�/2)−1. Consider an individual local positional

matrix element of ĝ±
L(R)(E), (g±

L(R))i j(E), such as one involving sites i, j coupled to C ,
and compare it with the corresponding matrix element, (g∞±

L(R))i j(E), of the Green’s function

7 The notation ĤS = ĤS(t) is reserved for time-dependent Hamiltonians.
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Figure 2. A resonant dimer in an atomic chain.

ĝ∞±
L(R)(E) = (E 1̂∞

L(R) − Ĥ ∞
L(R) ± i1̂∞

L(R)ε)
−1, ε → 0+, for a semi-infinite lead. We can make

the former an arbitrarily good approximation to the latter by making the finite lead longer and
� smaller, while keeping � much larger than the energy-level spacing in the finite lead. In the
limit, � takes over the role of ε, (g±

L(R))i j(E) → (g∞±
L(R))i j(E), and the steady-state current-

carrying DM in C in the multiple-probe case becomes the same as that in the two-terminal
Landauer steady state with semi-infinite electrodes.

In practical terms, we expect agreement with the two-terminal Landauer steady state
provided � is smaller than the energy scale, εF, of any relevant variations in the electronic
structure of a truly semi-infinite lead near the Fermi level, and provided � is larger than the
energy-level spacing in the finite leads in figure 1,

π h̄vF

l
< � < εF (17)

where vF is the electron Fermi velocity and l is the length of the finite lead.
This agreement is illustrated for a resonant dimer between two 1d electrodes (figure 2). In

the multiple-probe realization of the system, each electrode is an atomic chain of length NL

atoms. The device region C consists of ND/2 chain atoms on each side of the dimer. We use
a nearest-neighbour single-orbital orthogonal tight-binding model with a hopping integral tchain

everywhere, except the lead-dimer hopping integral, tc−d, and the intradimer hopping integral,
tdimer. The onsite energies on all atoms outside the dimer are zero and those of the two dimer
atoms are E A and EB . The bias V is applied symmetrically across the middle of the energy
band, μL(R) = ±eV/2. The differential conductance G(V ) = dI/dV , where I is the steady-
state current in region C , for the multiple-probe assembly is compared with the two-terminal
Landauer differential conductance in figures 3 and 4. The oscillations in the multiple-probe
conductance originate from the finite energy-level spacing in the electrodes. The oscillations
disappear as the electrode length is increased for a given �, or as � is increased for a given
electrode length, leaving behind a good approximation to the two-terminal conductance.

To summarize, imposing the wideband limit directly in the electrodes (L, R) adjoining
the device region (C) would in general be a restrictive approximation. However, in the case
of the multiple-probe assembly, imposing the wideband limit in the external probes (and not
directly in the electrodes) is a benign measure that generates, in a controlled way, arbitrarily
good approximations to the two-terminal steady state (in region C) that would be calculated for
semi-infinite leads with the correct electronic structure, appropriate to those leads.

3. Time-dependent formalism

We now use the multiple-probe assembly from the previous section to obtain effective electron
injection and extraction terms for the one-electron DM in system S in the presence of dynamical
scattering in region C . First we give a general derivation. Then we introduce an approximation
that will be used for the simulations later. The present discussion is restricted to a time-
independent Hamiltonian, ĤP , in the external probes, where P denotes the set of probes.

6
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Figure 3. Differential conductance, in units of G0 = 2e2/h, for the system in figure 2, with
tchain = −3.88 eV, tc−d = −2 eV, tdimer = −3.88 eV, E A = EB = 0 eV. The bandwidth in the
leads is 4tchain. The solid line is the two-terminal Landauer solution.

Figure 4. Differential conductance, in units of G0 = 2e2/h, for the system in figure 2, with
tchain = −3.88 eV, tc−d = −0.5 eV, tdimer = −1 eV, E A = 5 eV, EB = −5 eV. Note the
logarithmic axis for the conductance.

3.1. General result

Let

Ĥ (t) = ĤS(t) + ĤS P(t) + ĤP S(t) + ĤP (18)

7
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be an effective one-electron Hamiltonian for the combined system in figure 1. The S P
couplings HS P(t) = Ĥ †

P S(t) have been allowed to be time-dependent. The time dependence
of the Hamiltonian in S, ĤS(t), may come from a time-dependent external field acting in S,
from some other dynamical scattering potential in S, or from temporal variations in the one-
electron DM in S in a time-dependent density-functional (TDDFT) calculation8. We adopt the
initial conditions that are frequently used in transport calculations based on the non-equilibrium
Green’s function (NEGF) method [27] or on scattering theory [26],

ρ̂P (0) = ρ̂Peql =
∑

i∈L ,R

∫ +∞

−∞
fPi (E)d̂Pi (E) dE, ρ̂S P(0) = ρ̂P S(0) = 0 (19)

where d̂Pi (E) is the density of states operator for probe Pi in isolation, and ρ̂Peql is the
equilibrium density matrix for the probes in isolation, with fPi (E) = fL(R)(E), i ∈ L(R).9

The wideband limit in the external probes has not been introduced at this stage.
The global one-electron DM ρ̂(t), for the S P system as a whole, evolves according to

ih̄ ˙̂ρ(t) = [Ĥ(t), ρ̂(t)]. (20)

For the DM in S this gives [17]

ih̄ ˙̂ρS(t) = [ĤS(t), ρ̂S(t)] + ĤS P(t)ρ̂P S(t) − ρ̂S P(t)ĤP S(t). (21)

The terms after the commutator are the OB driving terms for S that we wish to find. The
solution to (20) is

ρ̂(t) = Ŵ (t, 0)ρ̂(0)Ŵ †(t, 0) (22)

where the propagator Ŵ (t, τ ) for the combined S P system obeys

ih̄
∂Ŵ (t, τ )

∂ t
= Ĥ (t)Ŵ (t, τ ), Ŵ (τ, τ ) = 1̂ = 1̂S + 1̂P . (23)

Let Ĥ0(t) = ĤS(t) + ĤP , V̂ (t) = ĤS P(t) + ĤP S(t) and

ÛP (t, τ ) = e−iĤP (t−τ)/h̄ (24)

ih̄
∂ÛS(t, τ )

∂ t
= ĤS(t)ÛS(t, τ ), ÛS(τ, τ ) = 1̂S (25)

ih̄
∂Û(t, τ )

∂ t
= Ĥ0(t)Û(t, τ ), Û(τ, τ ) = 1̂. (26)

Then

Ŵ (t, τ ) = Û(t, τ ) + 1

ih̄

∫ t

τ

Û(t, τ ′)V̂ (τ ′)Ŵ (τ ′, τ ) dτ ′ (27)

= Û(t, τ ) + 1

ih̄

∫ t

τ

Ŵ (t, τ ′)V̂ (τ ′)Û(τ ′, τ ) dτ ′ (28)

Ŵ †(t, τ ) = Û †(t, τ ) − 1

ih̄

∫ t

τ

Ŵ †(τ ′, τ )V̂ (τ ′)Û †(t, τ ′) dτ ′. (29)

Define

ρ̂(t, τ ) = Ŵ (t, 0)ρ̂(0)Ŵ †(τ, 0), ρ̂(t) ≡ ρ̂(t, t). (30)

8 We note, however, the care that must be taken in combining partitioned Hamiltonians of the above form with TDDFT
discussed in [24].
9 Alternative initial conditions are discussed in [24].
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From (22) and (29),

ρ̂S P (t) = ŴS P (t, 0)ρ̂P(0)Û †
P (t, 0) − 1

ih̄

∫ t

0
ρ̂S(t, τ )ĤS P(τ )Û †

P (t, τ ) dτ. (31)

Using (28),

ρ̂S P (t)ĤP S(t) = 1

ih̄

∫ t

0
ŴS(t, τ )ĤS P(τ )ÛP(τ, 0)ρ̂P (0)Û †

P (t, 0)ĤP S(t) dτ

− 1

ih̄

∫ t

0
ρ̂S(t, τ )ĤS P(τ )Û †

P(t, τ )ĤP S(t) dτ (32)

where, from (27), the effective propagator in S, ŴS(t, τ ), satisfies

ŴS(t, τ ) = ÛS(t, τ ) + 1

(ih̄)2

∫ t

τ

dτ ′
∫ τ ′

τ

dτ ′′ ÛS(t, τ
′)ĤS P(τ ′)ÛP (τ ′, τ ′′)ĤP S(τ

′′)ŴS(τ
′′, τ ).

(33)

Now we impose the wideband limit in the external probes P . This enables us to benefit
from the great simplifications that this limit affords [25], while retaining the confidence that,
as argued in the previous section, in the special case of the multiple-probe assembly this limit
produces a controlled approximation to the conventional two-terminal transport problem. In the
wideband limit, where all probes have an energy-independent surface local density of states d ,

ĤS P(τ )Û †
P(t, τ )ĤP S(t) = ĤS P(τ )

∫ +∞

−∞
dE d̂P(E) eiE(t−τ)/h̄ ĤP S(t)

= 2ih̄ �̂+(t) δ(t − τ ) = −2ih̄ �̂−(t) δ(t − τ ) (34)

where �̂+(t) = −i�(t) (1̂L +1̂R)/2 = �̂−†(t) with �(t) = 2πγ 2(t)d . Above, {|P〉} and {EP}
are the eigenstates and eigenvalues of the probe Hamiltonian ĤP , d̂P(E) = ∑

i∈L ,R d̂Pi (E) =∑
P |P〉δ(E − EP )〈P| is the probe density of states operator, and we have introduced the same

conditions as in the previous section, namely that each probe couples to only one site in L or
in R, with a matrix element γ (t) (which now is allowed to be time-dependent) common to all
probes.

Then (32), together with (19) and (21), gives the OB equation of motion for the DM in S

ih̄ ˙̂ρS(t) = [ĤS(t), ρ̂S(t)] −
(
ρ̂S(t)�̂

−(t) − h.c.
)

−
(

1

ih̄

∫ t

0
dτ

∫ +∞

−∞
dE eiE(t−τ)/h̄ ŴS(t, τ ) �̂<

τ t (E) − h.c.

)
(35)

where �̂<
τ t (E) = (2π)−1 sgn[γ (τ)]sgn[γ (t)] √

�(τ)�(t) [ fL(E)1̂L + fR(E)1̂R]. For time-
independent couplings, �̂<

τ t (E) = �̂<(E) from (15). Above, the integral in the second term
in (32) has collected a factor of 1/2 from the upper limit for τ which lies half way through the
delta function, introduced by (34). The terms after the commutator in the first line of (35) are
the effective extraction terms, responsible for the loss of electrons to the external probes. The
terms in the second line are the injection terms into S. The OB terms operate only in S and
involve only the instantaneous DM therein. The propagator in S, ŴS(t, τ ), obeys

ih̄
∂ŴS(t, τ )

∂ t
= [ĤS(t) + �̂+(t)]ŴS(t, τ ), ŴS(τ, τ ) = 1̂S (36)

ŴS(t, τ ) = ÛS(t, τ ) + 1

ih̄

∫ t

τ

ÛS(t, τ
′)�̂+(τ ′)ŴS(τ

′, τ ) dτ ′. (37)

9
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For a time-independent ĤS = ĤS0 and time-independent S P coupling, ŴS(t, τ ) =
e−i(ĤS0 +�̂+)(t−τ)/h̄ , and in the limit t → +∞ (35) becomes

ih̄ ˙̂ρS(t) = [ĤS0, ρ̂S(t)] + �̂+ρ̂S(t) − ρ̂S(t)�̂
−

+
∫ +∞

−∞
[�̂<(E)Ĝ−

S (E) − Ĝ+
S (E)�̂<(E)] dE (38)

with �̂±, Ĝ±
S (E) and �̂<(E) given by equations (13), (14) and (15). Equation (2) is a steady-

state solution to (38). Therefore, as may be expected, the time-dependent formalism returns the
steady state given by stationary scattering theory.

To summarize the motivation for introducing the multiple-probe assembly in figure 1: (i)
it enables the introduction of the wideband limit in P while retaining a controllable connection
with the conventional two-terminal setup; (ii) this enables the OB driving terms in S to be
expressed solely in terms of the instantaneous DM in S (without the wideband limit in the
external probes, the second term in (32) retains the two-time quantity ρ̂S(t, τ )); (iii) from
a practical point of view, figure 1 removes the need for the usual computation of energy-
dependent surface Green’s functions that arises in the conventional two-terminal setup.

3.2. Approximate result

Our purpose now is to replace the injection terms in the second line of equation (35) by
approximate injection terms that are temporally local and are independent of any dynamical
scattering of electrons in region C . This approximation gains tractability, but also introduces a
key limitation, discussed below.

The key approximation is to introduce a dephasing factor, e−(t−τ)/τ� , in the injection terms
in the second line of (35), so that they now read

−
(

1

ih̄

∫ t

0
dτ

∫ +∞

−∞
dE eiE(t−τ)/h̄e−(t−τ)/τ� ŴS(t, τ )�<(E) − h.c.

)
(39)

where for simplicity we assume that the coupling �(t) has been switched on over some early
period to a constant value �, with t lying τ� or more beyond that early period, and have replaced
�(t) and �(τ) by �. The time τ� corresponds to an energy scale � = h̄/τ�.

We can think of the relaxation time τ� in two ways. First, it may describe a generic
dephasing mechanism that restricts the duration of coherent propagation of signals between P
and S. A further discussion of the introduction of decoherence factors is given in [25]. Second,
for t > 0, b > 0,

∫ 0

−b
eiωt e−t/τ� dω =

∫ +∞

−∞
eiωt f̃ (ω) dω,

f̃ (ω) = 1

π

(
tan−1[(b + ω)τ�] − tan−1(ωτ�)

)
.

(40)

In the limit b → +∞, f̃ (ω) → (1/2 − π−1 tan−1(ωτ�)). Therefore, the introduction of
the dephasing factor e−(t−τ)/τ� in (39) is equivalent to replacing the step-like Fermi–Dirac
distributions of the probes fL(R)(E) (for simplicity, we consider the case of zero electronic
temperature) in �̂<(E) by the fictitious distributions f̃L(R)(E) = 1/2 − π−1 tan−1[(E −
μL(R))/�]. f̃L(R)(E) mimics fL(R)(E) in that f̃L(R)(−∞) = 1, f̃L(R)(μL(R)) = 1/2,
f̃L(R)(+∞) = 0, but is broadened by 2�. The essential consequence of (39), therefore, is that
electrons now arrive in S with fictitious energy distributions that have the same electrochemical
potentials as the original distributions but contain the additional broadening. This places a
corresponding restriction on the resolution of I –V spectral features. However, we can now

10
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obtain temporally local injection terms, independent of the electron dynamics in region C , as
follows.

Suppose that the Hamiltonian in S is composed of a time-independent Hamiltonian
ĤS0 together with a time-dependent scattering potential v̂(t) that operates solely in some
subregion in the interior of region C , ĤS(t) = ĤS0 + v̂(t). Writing ŴS(t, τ ) =
ŴS0(t, τ ) + (ih̄)−1

∫ t
τ

ŴS(t, τ ′)v̂(τ ′)ŴS0(τ
′, τ ) dτ ′, where ŴS0(t, τ ) = e−i(ĤS0+�̂+)(t−τ)/h̄ is

the propagator in S in the presence of the probes and in the absence of v̂, the first term in (39)
becomes

− 1

ih̄

∫ t

0
dτ

∫ +∞

−∞
dE eiE(t−τ)/h̄e−(t−τ)/τ� ŴS0(t, τ )�<(E)

− 1

(ih̄)2

∫ t

0
dτ

∫ t

τ

dτ ′
∫ +∞

−∞
dE eiE(t−τ)/h̄e−(t−τ)/τ� ŴS(t, τ

′)v̂(τ ′)ŴS0(τ
′, τ )�<(E).

(41)

The product v̂(τ ′)ŴS0(τ
′, τ )�̂<(E) in the second term contains the amplitude for the

transmission of a signal from a point in L, R (where the S P coupling operates) to the interior of
C (where v̂ operates), over a time (τ ′−τ ). Because of the limits of integration (τ ′−τ ) � (t−τ ).
The real exponential, on the other hand, is significant only over (t − τ ) < τ�. Therefore,
provided the distance between L, R and the interior of C is greater than veτ�, where ve is a
typical electron group velocity, signals from L, R cannot reach the scattering potential v̂ in the
time (τ ′ − τ ) and the second term in (41) does not contribute. The injection of electrons into L,
R has thus effectively been decoupled from their subsequent scattering in C . The origin of this
decoupling is seen in physical terms if we think of the dephasing factor in (39) as a restriction,
τ�, on the duration of coherent propagation between S and P: if C is long enough, electrons
that are being injected into L, R do not reach far enough into S, over this restricted duration,
to be aware of what awaits them in C , and the injection process is governed chiefly by ĤS0

(together with the S P coupling).
For times t an amount τ� or more beyond the initial application of the S P coupling, from

the first term in (41) we now obtain the OB equation of motion

ih̄ ˙̂ρS(t) = [ĤS(t), ρ̂S(t)] + �̂+ρ̂S(t) − ρ̂S(t)�̂
−

+
∫ +∞

−∞
[�̂<(E)Ḡ−

S (E) − Ḡ+
S (E)�̂<(E)] dE (42)

Ḡ±
S (E) = (E 1̂S − ĤS0 − �̂± ± i1̂S�)−1. (43)

The screening of an extra scattering potential v̂, provided by �, may be seen in the energy
domain as follows. The full injection terms in the steady state, in the presence of the thermal
broadening �, contain the full Green’s function Ĝ±

S (E) = (E 1̂S − ĤS0 − v̂ − �̂± ± i1̂S�)−1.
Writing Ĝ±

S (E)�̂<(E) = Ḡ±
S (E)�̂<(E) + Ĝ±

S (E)v̂Ḡ±
S (E)�̂<(E), provided the distance

between L(R) and the scatterer is greater than ∼veτ�, the second term vanishes, because �

makes Ḡ±
S (E) exponentially small over that distance, and we rigorously recover (42).

For the model applications in this paper, we have made two simplifications to (42). First,
we have set � = �/2, so we have a single parameter to vary. Second, we have dropped �̂±
in Ḡ±

S (E) in the injection terms in (42). This is formally correct to lowest order in the S P
coupling, and simplifies the construction of the injection terms. This approximation may be
extended beyond the limit of weak S P coupling under the following conditions. The neglect of
�̂± in Ḡ±

S (E) is equivalent to replacing ŴS0(t, τ ) in the first term in (41) by the free propagator

ÛS0(t, τ ) = e−iĤS0 (t−τ)/h̄ in S, in the absence of v̂ and in the absence of the probes. This retains
single electron injection processes and excludes those corrections to the injection terms that
arise from multiple coherent S P excursions. These higher-order corrections develop over times

11
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Figure 5. I–V curves for a resonant dimer obtained with the approximate time-dependent
open boundaries in equation (44), compared with the unapproximated multiple-probe steady state
from (2) and with the Landauer steady state. A typical current trace is shown in the inset
(NL = 90, ND = 20, � = 0.35 eV, V = 8 V).

of the order of, or greater than, the mean electron residence time ∼h̄/� (from equation (12))
in the electrodes, in the presence of the probes. The dephasing factor in (41), on the other
hand, restricts the memory of the injected intensity (modulus of amplitude, squared) to times
∼τ�/2 = h̄/2�. Therefore, provided � is of the order of, or greater than, �/2, the contribution
of multiple S P excursions to the injection terms is suppressed.

With these simplifications in place, the OB equation of motion reads

ih̄ ˙̂ρS(t) = [ĤS(t), ρ̂S(t)] + �̂+ρ̂S(t) − ρ̂S(t)�̂
−

+
∫ +∞

−∞
[�̂<(E)G̃−

S (E) − G̃+
S (E)�̂<(E)] dE (44)

G̃±
S (E) = (E 1̂S − ĤS0 ± i1̂S�/2)−1 (45)

with �̂± and �̂<(E) given by equations (13) and (15). In the calculations below, the energy
integral in (44) uses a lower limit chosen deep below the lower band edge for the system S.
Calculations with the more elaborate form in (42) are left for future work.

The key limitation of (44) is that it gives a steady-state electronic structure with an energy
broadening ∼� (corresponding to 2� in the more general result in (42)). This is illustrated
by applying (44) to a resonant dimer similar to that considered above. Figure 5 compares the
steady-state I –V curves generated by (44) with the exact multiple-probe steady state from (2)
and with the two-terminal Landauer steady state. As before, the system consists of two one-
dimensional electrodes, each with NL atoms, with a device region consisting of a chain of
ND/2 atoms on each side of the dimer. In this example, tchain = −3.88 eV, tc−d = −0.5 eV and
tdimer = −3.88 eV, with all onsite energies equal to zero, leading to a very narrow resonance.
The values of current from the time-dependent simulation (given by the expectation of the
tight-binding bond-current operator [26] in the instantaneous density matrix, in a bond chosen
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somewhere between an electrode and the dimer) are obtained by integrating (44) until a steady
state is reached (see the inset in the figure). The OB driving terms are switched on over a period
of 5 fs at the start of the simulation and maintained thereafter. The unapproximated multiple-
probe steady state from (2) is in excellent agreement with the two-terminal Landauer solution
as expected. Equation (44) captures the resonance with an additional broadening that dies out
with decreasing �. Decreasing � further still, so that the broadening is negligible, requires
longer and longer leads (from (17)), for which the computation becomes impractical. However,
this limitation is an artefact of the simplification in (44), which ties up the resolution-limiting
parameter � with the lead-length-limiting parameter �. This restriction will, we hope, be lifted
in future work based on (42), where the resolution-limiting parameter � (needed to screen out
dynamical scattering in C) is set solely by the device length.

4. Application to correlated electron–ion dynamics (CEID)

In this section the approximate OB scheme in equation (44) is combined with the second-order
CEID expansion in [21] and is applied to two model problems.

4.1. CEID equations of motion

The method for CEID in [21] is an expansion of the equation of motion for the many-body
DM for a system of electrons and ions to first order in the correlated electron–ion fluctuations
and to second order in ionic fluctuations about the mean ionic trajectory. The resultant system
of equations of motion, for a set of electron–ion correlation functions, is then reduced to one-
electron form by an extension of the Hartree–Fock approximation for the two-electron DM
to take account of the spread of electronic trajectories, and resultant non-idempotency of the
one-electron DM, to lowest order in the electron–ion correlations. This procedure yields the
following equations of motion, given here for non-interacting electrons and one ionic dynamical
degree of freedom,

˙̄R = P̄

M
, ˙̄P = F̄, F̄ = FI + Tr{ρ̂ F̂} − Tr{μ̂K̂ } (46)

˙̂ρ = 1

ih̄
[Ĥ , ρ̂] − 1

ih̄
[F̂, μ̂] + 1

2ih̄
CR R[K̂ , ρ̂] (47)

˙̂μ = 1

ih̄
[Ĥ , μ̂] + λ̂

M
− 1

ih̄
CR R[F̂, ρ̂] (48)

˙̂
λ = 1

ih̄
[Ĥ , λ̂] − 1

ih̄
CR P [F̂, ρ̂] + 1

2
(F̂ ρ̂ + ρ̂ F̂) − ρ̂ F̂ ρ̂ + C−1

R R(μ̂ Tr{F̂μ̂} − μ̂F̂μ̂)

− K̄ μ̂ − 1
2 (K̂ μ̂ + μ̂K̂ ) + (μ̂K̂ ρ̂ + ρ̂ K̂ μ̂), K̄ = KI + Tr{K̂ ρ̂} (49)

ĊR R = 2

M
CR P , ĊR P = CP P

M
+ Tr{μ̂F̂} − K̄ CR R, ĊP P = 2 Tr{λ̂F̂} − 2K̄ CR P .

(50)

Above, Ĥ = Ĥ(R̄) is the one-electron Hamiltonian in the presence of the ions, and we have
introduced the force and stiffness operators

F̂ = F̂(R̄) = −∂ Ĥ(R̄)

∂ R̄
, K̂ = K̂ (R̄) = ∂2 Ĥ(R̄)

∂ R̄2

FI = FI (R̄) = −∂ HI (R̄)

∂ R̄
, KI = KI (R̄) = ∂2 HI (R̄)

∂ R̄2

13
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where HI is the ion–ion interaction potential. M is the ionic mass. The one-electron DM is
defined by ρ̂ = ρ̂(t) = NeTre,2...Ne TrI {ρ̂eI } where ρ̂eI = ρ̂eI (t) is the many-body DM for the
whole system, including electrons and ions. We have also introduced the one-electron operators
μ̂ = μ̂(t) = NeTre,2...Ne TrI {�R̂ρ̂eI } and λ̂ = λ̂(t) = NeTre,2...Ne TrI {�P̂ρ̂eI } which contain
correlations between the electrons and ionic position and momentum, respectively. Here R̂ and
P̂ are the ionic position and momentum operators and �R̂ = R̂− R̄, R̄ = R̄(t) = Tre,I {R̂ρ̂eI },
�P̂ = P̂ − P̄ , P̄ = P̄(t) = Tre,I {P̂ ρ̂eI }. The quantities CR R = CR R(t) = Tre,I {(�R̂)2ρ̂eI },
CR P = CR P (t) = Tre,I {(�R̂�P̂ + �P̂�R̂)ρ̂eI }/2, CP P = CP P(t) = Tre,I {(�P̂)2ρ̂eI } are
the widths of the ionic phase-space distribution and measure the effective degree of vibrational
excitation of the ion.

Equations (46)–(50) can be viewed as low-order corrections to Ehrenfest dynamics.
Ehrenfest dynamics arises in the limit of vanishing electron–ion correlations (μ̂ = 0, λ̂ = 0)
and vanishing ionic fluctuations (CR R = 0, CR P = 0, CP P = 0), when equations (46)–(50)
reduce to

˙̄R = P̄

M
, ˙̄P = F̄, F̄ = FI + Tr{ρ̂ F̂(R̄)}, ˙̂ρ = 1

ih̄
[Ĥ(R̄), ρ̂]. (51)

Equations (46)–(50) then reinstate various corrections to Ehrenfest dynamics. For example,
the terms (F̂ ρ̂ + ρ̂ F̂)/2 − ρ̂ F̂ ρ̂ in (49) nucleate inelastic electron–ion scattering, in a way
that accommodates the fermionic statistics of the electrons. The term −CR R[F̂, ρ̂]/ih̄ in (48)
introduces the inelastic scattering cross-section of the vibrating ion, CR R , that electrons see.
The term −[F̂, μ̂]/ih̄ has the job of collecting this information and depositing it in (47), so as
to generate effective corrections to the electron propagation, and the redistribution of electrons
in energy, caused by the inelastic scattering with ions. Power is injected into ionic vibrations by
the term Tr{λ̂F̂} in ĊP P in (50), which contains the correlated force–momentum fluctuations,
required for energy transfer.

The CEID equations have a relation to scattering theory. When applied to a harmonic
oscillator linearly coupled to electrons in an infinite wire, to lowest order in the electron–
oscillator coupling F̂ , (46)–(50) analytically return the scattering rates from the Fermi Golden
Rule (FGR) [21]

ḟα = 2π

h̄

h̄

2Mω

∑

β

|Fαβ |2{−(N + 1) fα(1 − fβ)δ(Eβα + h̄ω) − N fα (1 − fβ)δ(Eβα − h̄ω)

+ (N + 1) fβ(1 − fα)δ(Eβα − h̄ω) + N fβ (1 − fα)δ(Eβα + h̄ω)} (52)

where α labels the eigenstates, with energies {Eα} and occupancies { fα}, of the one-electron
Hamiltonian in the absence of the oscillator, Eβα = Eβ − Eα, ω is the angular frequency of
the oscillator and N is the effective number of quanta of excitation of the oscillator, related
to the CEID variable CR R through Mω2CR R = (N + 1/2)h̄ω. At the same time, (46)–(50)
go beyond the FGR, in that, when integrated together, they sum these lowest-order scattering
processes to higher orders in F̂ , in distinct similarity to the self-consistent Born approximation
(SCBA) (a recent survey of these methods is given in [28]). A difference from conventional
scattering theory is that, when used with an explicit electron–ion interaction Hamiltonian, (46)–
(50) do not pre-calculate oscillator normal modes and frequencies as an input, but generate
them in the course of the solution [21]. A further difference, at least of form, is that CEID uses
instantaneous variables interpretable in MD terms.

Equation (52) captures the spontaneous emission of phonons by excited electrons,
responsible for the inelastic corrections to I –V spectra at low temperatures and for ionic heating
under current flow. Therefore, we expect the CEID equations (46)–(50) to be able to capture
these processes also.
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4.2. CEID with open boundaries

Equations (47)–(49) may be written as

ih̄ ˙̂q = [Ĥ , q̂] + �̂(q), q̂ = ρ̂, μ̂, λ̂ (53)

where �̂(q) describe electron–ion dynamical scattering. To apply the approximate OB result
in equation (44), we imagine that the dynamical ionic degrees of freedom are located in the
interior of region C in figure 1 and we write the OB equations of motion in S

ih̄ ˙̂qS = [ĤS, q̂S] + �̂
(q)

S + D̂(q), q̂ = ρ̂, μ̂, λ̂ (54)

D̂(ρ) = �̂+ρ̂S − ρ̂S�̂
− +

∫ +∞

−∞
[�̂<(E)G̃−

S (E) − G̃+
S (E)�̂<(E)] dE (55)

D̂(μ) = �̂+μ̂S − μ̂S�̂
−, D̂(λ) = �̂+λ̂S − λ̂S�̂

− (56)

where for the last two equations we have used the analogues to (19) μ̂P (0) = 0, λ̂P (0) = 0.
Following section 3.2, the Hamiltonian ĤS0 to be used in the construction of G̃±

S (E) in (55) is
taken as the electronic Hamiltonian evaluated at the classical ionic positions at t = 0.

To summarize: at the present level of approximation, (i) the injection Green’s functions
G̃±

S (E) for ρ̂S carry an extra ±1̂C�/2 (or ±1̂S� in the more elaborate result in (42)) which
masks the CEID scattering potential in C at the cost of introducing an effective thermal
broadening ∼� (2� in (42)) in the incoming electronic distributions; (ii) the injection
Green’s function is missing a self-energy to account for the coherent addition of injection and
subsequent scattering that builds up in time; (iii) the electron–ion correlation operators μ̂S and
λ̂S have no injection terms. Items (ii) and (iii) in the presence of (i) are justified for a long
enough device. The removal of (i)–(iii), so as to remove the artificial energy broadening and
reinstate the coherence between injection and CEID scattering in C , is a subject for future
work.

4.3. A benchmark calculation: inelastic I –V characteristics in a closed system

To provide a basis for comparison with the OB CEID simulations, we first revisit a calculation
in [21]. In this calculation, (46)–(50) are applied to current flow in a finite closed system
(without OB driving terms) and are used to extract the resultant inelastic I –V spectrum. The
system is an atomic chain containing a single dynamical quantum ion of mass M = 1 amu at
the centre of the chain. Only longitudinal motion of the ion is allowed at present. Electron–ion
interactions are described through a single-orbital tight-binding model, and ion–ion interactions
through a repulsive pair potential, with parameters fitted to the elastic properties of bulk
gold [29]. In the present calculations, the band filling is 1/2. The bond length in the chain is
2.5 Å. As in [21], initially a static bias V is applied across the middle of the chain, the ground-
state electronic DM in the presence of this bias is found, after which the bias is removed, over
a period of 5 fs, resulting in a flow of current.

Here, we make two modifications compared with [21] to enable a more detailed
comparison with scattering theory. In [21], the ion was allowed to heat up in the course of
the simulation. By contrast, here we keep CR R , CR P and CP P fixed at their initial values,
set to those for the vibrational ground state of the dynamical ion in the Born–Oppenheimer
approximation. This corresponds to setting N = 0, ω = ωBO in the FGR, where ωBO is
the Born–Oppenheimer angular frequency of the ion. For the present parameters, h̄ωBO =
0.26 eV. R̄ is held fixed at the equilibrium ionic position and P̄ is held fixed at zero. This
procedure corresponds, notionally, to connecting the dynamical ion to an infinitely efficient
external thermostat at zero temperature. This procedure retains the inelastic I –V corrections
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Figure 6. Differential conductance and its derivative with respect to voltage for an atomic chain
with one dynamical ion of mass 1 amu, for different chain lengths and electronic temperatures. A
current trace for a 601-atom chain at Te = 100 K, for V = 0.5 V is shown in the inset. The
Born–Oppenheimer angular frequency for the ion is h̄ωBO = 0.26 eV.

due to spontaneous phonon emission at zero temperature and eliminates the additional I –V
corrections due to actual variations in the effective ionic energy [30]. Here, furthermore, we
consider a range of electronic temperatures Te, which enter the calculation in the construction
of the initial electronic DM. We then integrate equations (47)–(49) with μ̂(0) = 0, λ̂(0) = 0
and take an I –V spectrum by averaging the current over a 25 fs time interval following the
removal of the external bias. The results are shown in figure 6 and may be understood with the
help of the FGR as follows.

Consider for a moment a lead–sample–lead system in the Landauer picture. The one-
electron stationary states in the absence of phonons are Lippmann–Schwinger scattering states,
derived from incident waves in the left and right lead and populated with electrochemical
potentials offset by the bias eV [26]. For a ballistic conductor these states are pure
Bloch waves and the FGR scattering rates between waves of opposite velocity directly give
the inelastically backscattered electron current [31]10. At zero electronic temperature, the
differential conductance for an Einstein oscillator of angular frequency ω, in the vibrational
ground state, in a perfect wire is given by

dI

dV
= Gel − G0 θ(|eV | − h̄ω) 4π2 h̄

2Mω
T12 = G0 − G0 θ(|eV | − h̄ω) 4CR R

(
H ′

H

)2

(57)

with CR R = (N + 1/2)h̄/Mω, ω = ωBO, N = 0. Above, Gel is the zero-bias elastic (phonon-
free) conductance, θ(x) is the Heaviside step function and T12 = Tr[D̂1(EF)F̂ D̂2(EF)F̂],
where D̂1(2)(EF) are the partial density of states operators for the two classes of electronic
states above, evaluated at the Fermi level EF. To derive (57) from (52), we have ignored

10 This result needs to be modified if there is non-zero elastic backscattering in the absence of phonons, when the
Lippmann–Schwinger reference states already contain a mixture of Bloch waves [31, 32].
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Figure 7. d2 I/dV 2 for a dynamical ion in a 601-atom chain, at Te = 100 K (upper plot) and
Te = 500 K (lower plot). The current was averaged over a series of 5 fs time windows, whose
initial time is the label for each curve.

variations of D̂1(2)(E) over energy intervals of the order of |eV | or h̄ω near EF. The second
result in (57) is for a linear chain in a nearest-neighbour tight-binding model, with a hopping
integral H with derivative with distance H ′. The inelastic suppression of the conductance is a
step-function of bias at |eV | = h̄ω, with a magnitude 0.082 G0 for the present parameters. At
non-zero electronic temperature, Te, the Fermi–Dirac occupancies { fα} in (52) are no longer
step functions of energy and the step function in (57) broadens into a function with a derivative
with a characteristic width �ETe ∼ 5.4kBTe [30, 33].

The CEID simulation in figure 6 captures several features of this behaviour. The position
and magnitude of the inelastic drop in conductance agree well with the expected values, while
decreasing Te leads to a significant sharpening of the I –V feature. The width at Te = 100 K is
considerably smaller than that observed in [21], where Te was 500 K.

The improvement in resolution with decreasing Te in the present calculations is limited
by two factors. One is the finite energy-level spacing (∼0.04 eV at the Fermi level for the
601-atom chain). The other is the finite time of propagation of the dynamical equations, t .
The energy-conserving delta functions in (52) emerge in the limit t → ∞, while at finite
times scattering rates retain an energy width �Et ∝ h̄/t . One of the findings of [21], for
Te = 500 K, was that the width of the inelastic feature did not decrease with increasing time
of propagation. By contrast, at the much lower electronic temperature Te = 100 K in figure 7
(upper panel) we see a marked improvement in resolution with increasing t . For Te = 500 K
(lower panel), �Et is masked by �ETe , and the resolution becomes independent of t , as in [21].
The above observations illustrate the agreement between CEID and scattering theory. We
conclude that the resolution of inelastic I –V spectra in [21] was limited by Te rather than by an
intrinsic broadening of the electron and vibrational band structure generated by equations (46)–
(50), and that any such intrinsic broadening is below the resolution of the present
calculations.
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Figure 8. Differential conductance for a dynamical ion in an atomic wire, using the open-boundary
formalism, for various system lengths and electrode–probe coupling strengths. Also shown is the
differential conductance from the benchmark closed-system simulation. The inset shows a typical
current trace (NL = 200, ND = 141, � = 0.25 eV, V = 0.5 V).

4.4. CEID with open boundaries: inelastic I –V spectra

The OB CEID equations of motion (54)–(56) are now used to generate steady-state currents
and a corresponding I –V spectrum for a dynamical quantum ion in a chain with the same tight-
binding parameters and ionic mass as above. The electronic temperature used in the injection
terms in equations (44) and (55) is zero. The ionic variables R̄, P̄ , CR R , CR P and CP P are held
frozen at the values for the Born–Oppenheimer vibrational ground state as in section 4.3.

Figure 8 shows the results for different lengths of the device region (region C in figure 1,
with the dynamical ion at the centre), different lead lengths (regions L and R) and different
values of the parameter �, and compares them with the earlier closed-system calculation for a
601-atom chain and Te = 100 K. The inelastic I –V feature in the OB steady state is present,
but is broadened. The sharpness of the feature saturates with device length, and is limited by
�. This is the expected error, due to the energy broadening introduced by the approximate
injection terms in (55) and (56). As � decreases, the resolution improves and the magnitude of
the inelastic drop in conductance agrees more and more closely with the expected values from
the closed-system calculation and from scattering theory.

4.5. Ionic heating and equilibration

Having propagated equations (54)–(56) with frozen ionic variables (R̄, P̄ , CR R , CR P and CP P )
to a steady state as in the previous subsection, the ionic variables are now unfrozen and are
allowed to propagate according to equations (46), (50). Figures 9 and 10 show the total ionic
energy11 and the current in the wire as a function of time for two different ionic masses. The

11 Following [21], the total ionic energy plotted here is taken as (CP P /2M + KBOCRR/2). This is the quantity used in
scattering calculations of heating, for example. KBO ∼ 260 J m−2 is the Born–Oppenheimer stiffness for the oscillator.
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Figure 9. Vibrational energy of a single dynamical ion with M = 1 amu at various voltages, with
corresponding currents. NL = 200, ND = 201, � = 0.2 eV. Curves from bottom to top correspond
to voltages from 0 to 1 V.

ion heats up in time to a bias-dependent asymptotic value, while the current decreases in the
course of the ionic heating. The heating rate depends on the ionic mass but the asymptotic
values of the ionic energy and current, for a given bias, are approximately independent of mass.

To understand these results, we return to the FGR. For the power into an Einstein
oscillator in a current-carrying wire, at zero electronic temperature, in the Landauer picture,
(52) gives [19, 31]

Ė = 2π h̄

M
[−E(T11 + 2T12 + T22) + (|eV | − h̄ω)θ(|eV | − h̄ω) T12], E = Nh̄ω (58)

where Ti j = Tr[D̂i(EF)F̂ D̂ j (EF)F̂] and, as in (57), we have ignored variations of D̂1(2)(E)

over energy intervals of the order of |eV | or h̄ω near EF. This result may be extended
to more than one vibrational degree of freedom [31]. The power into vibrational modes
in atomic wires has also been calculated within NEGF and extended to non-zero electronic
temperature [32, 34, 35]. In the absence of lattice heat conduction away from the oscillator,
setting Ė = 0 in (58) gives the oscillator energy, E = E∞, that the oscillator needs, in order to
be in equilibrium with the current-carrying electrons [31, 35, 36]. For |eV | > h̄ω, the result is

U∞ = E∞ + h̄ω

2
= h̄ω

2
+ T12

T11 + 2T12 + T22
(|eV | − h̄ω) �

h̄ω

2
+ 1

2
(|eV | − h̄ω) = |eV |

2
.

(59)

If expressed in terms of a notional oscillator temperature T∞ via U∞ = (N∞ + 1/2)h̄ω,
N∞ = 1/(eh̄ω/kB T∞ − 1), (59) reads kBT∞ � |eV |/2. Equality in (59) is achieved for T11 =
T22 = 0. This is the case for an Einstein oscillator in a chain in the present tight-binding model,
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Figure 10. Vibrational energy of a single dynamical ion with M = 2 amu at various voltages, with
corresponding currents. NL = 200, ND = 201, � = 0.2 eV.

when (58) becomes [19] Ė = (2π h̄/M)(1/π2) [−2E +(|eV |− h̄ω)θ(|eV |− h̄ω)](H ′/H )2. If
we think of this as a rate equation [32], then for the oscillator energy U = U(t) = h̄ω/2+E(t),
with U(0) = h̄ω/2, we get

U(t) = 1

2
h̄ω + 1

2
(1 − e−t/τ )(|eV | − h̄ω)θ(|eV | − h̄ω)], 1

τ
= 4π h̄

M

1

π2

(
H ′

H

)2

. (60)

For our quantum ion, therefore, the FGR predicts heating, with a rate 1/τ , towards an
asymptotic value U∞ = |eV |/2.

The results of the OB CEID simulations in figures 9 and 10 agree closely with these
expectations. To quantify the comparison, a fit is made to the heating data using the functional
form in (60), with ω set to ωBO in the first term and with the prefactor and τ in the second
term as adjustable parameters in the fit. The fit gives τ ∼ 47 fs for M = 1 amu at
the inelastic threshold compared with an expected value of τ = 48 fs from (60) for the
present parameters. For M = 2 amu the fit gives τ ∼ 95 fs against an expected value of
τ = 96 fs. The fitted values of τ show some variation (∼10%) over the range of biases in
the figure. A small amount of ionic heating observed below the inelastic threshold reflects the
broadening of the incoming electronic distributions by the parameter � in the time-dependent
OB simulations.

These results are summarized in figure 11 which shows the asymptotic value of the ionic
energy as a function of bias, obtained by extrapolating the result from the fit to infinite times.
The above results for the maximal heating of a vibration in a metallic wire, in the absence of
cooling by lattice heat conduction, agree with the results reported in [30], and are significantly
lower than those reported in [37, 38].
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Figure 11. Extrapolated (t → ∞) maximal vibrational energy of a single dynamical ion of mass M
in a 601-atom chain, for M = 1 amu (left) and M = 2 amu (right). The solid line is the result from
the Fermi golden rule at zero temperature; the points are from the open-boundary CEID simulations.
Details are in the text.

The decrease in current with time in figures 9 and 10 is due to the increase in scattering
cross-section, CR R , with ionic heating. The maximal vibrational energy of the ion, U(∞) ≈
|eV |/2, is set by the bias and is independent of ionic mass. If we assume equipartitioning
between ionic kinetic energy (CP P/2M) and potential energy (KBOCR R/2), then, since KBO is
itself independent of ionic mass, we expect the maximal value of CR R to be mass-independent,
and hence the maximal reduction in current for a given bias to be mass-independent. This
expectation is reasonably borne out by figures 9 and 10, where the asymptotic value of the
current for a given bias is roughly the same for the two masses. This mass-independent maximal
suppression of the current, therefore, probes directly the strength of the effective underlying
electron–phonon scattering potential.

We may estimate the suppression in current analytically, to compare with the numerical
results, as follows. Consider an ion rigidly displaced by an amount �R in an otherwise perfect
tight-binding atomic chain. For the zero-bias conductance, at the band centre, the Landauer
formula [26] gives dI/dV = G0 4 λ2

1λ
2
2/(λ

2
1 + λ2

2)
2, where λ1(2) = H1(2)/H , with H1(2) the

hopping integrals on either side of the displaced ion and H the equilibrium hopping integral.
Writing λ1(2) ≈ (1 ± δ), δ = H ′�R/H , for the reduction in conductance below the ballistic
value we have �dI/dV = G0 − dI/dV ≈ G0 4 δ2/(1 + δ2)2. Setting �R2 = CR R gives
δ2 = CR R(H ′/H )2. From the value of CR R at the end of the simulation (200 fs) for M = 2 amu
and V = 1 V in figure 10, which is such that KBOCR R/2 ≈ 0.21 eV, we obtain δ2 ≈ 0.066,
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with �dI/dV ≈ 0.23 G0 and a total current I ≈ (G0 − �dI/dV )V ≈ 59 μA, in reasonable
agreement with the value in the figure.

5. Summary

A method for correlated electron–ion dynamics was combined with electronic OB and was
applied to a model simulation of the heating of a quantum ion in a current-carrying atomic
wire, the eventual equilibration of the ion with the current and the accompanying response of
the current in real time. While the initial heating rate scales inversely with ionic mass, the
eventual maximal ionic energy and corresponding maximal suppression of the current for a
given bias are largely mass-independent, in agreement with the predictions of scattering theory.
The maximal values of the suppression of the current directly probe the strength of the effective
electron–phonon interaction potential F̂ . In the present simulations, no lattice heat conduction
was taken into account. This case is not irrelevant since atomic-scale junctions can harbour
highly localized vibrational modes, due to their topological inhomogeneity [31]. However,
the inclusion of a thermostat for the quantum ions to model heat loss to the electrodes is an
important extension for the future. The method furthermore enables the calculation of inelastic
I –V corrections in the steady state, but at present can only do so with a limited resolution, due
to the dephasing approximation in the electron injection terms.

While only a modest step in the development of MD simulations of current-carrying
nanostructures, the present type of simulation introduces a key element: the heating of atomic
vibrations under steady current, with both electrons and ions treated dynamically on an equal
quantum-mechanical footing. However, much more work lies ahead on the road to the realistic
simulation of current-driven dynamics in nanowires. For the present simulations directions for
future improvement are: corrections to the OB injection terms to take account of the coherence
between injection and subsequent scattering that builds up in time; introduction of lattice heat
conduction into the environment; inclusion of electron–electron screening, at least at the level
of the extended Hartree–Fock approximation proposed in [21]. It was noted earlier that the
present form of the CEID bears suggestive similarities to SCBA. A formal comparison between
the two is an attractive future study. Finally, the CEID expansion used here was derived in
the limit of weak correlations between electrons and ionic vibrations. To address problems
where this correlation is strong requires a re-formulation of the method. Work on this is
under way.
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